ON THE STABILITY OF MOTION IN THE
 gENERALIZED PROBLEM OF TWO Immovable centens

(OB USTOICHIYOSTI DVIZRENIIA V OBOBSHCHENNOI ZADACHE DVUKH NEPODVIZHNYKH TSENTROV)

PMM Vol.26, No.6, 1962, pp. 1118-1121

v.g. Degtiarev

(Moscom)
(Received 16 July 1962)

One of the methods for investigating the motion of the earth's artificial satellites is the approximation of the earth's gravitational potential by a potential sufficiently close to the potential of the earth. At the same time the approximating potential is chosen such that the problem could be solved in quadratures (expansion of the potential into a series of Legendre polynomials [1,2]. potential of two immovable centers [3]). Then the qualitative analysis of the motion is also simplified.
E.P. Aksenov, E.A. Grebenikov and V.G. Demin believe that to date the most general of all the considered approximating potentials of the earth is the potential of two complex conjugate masses located at a certain complex distance from each other. With kind permission of Aksenov, Grebenikov and Demin, the author has utilized the formulation of the "generalized" problem of two immovable centers for investigating the stability of certain types of orbits for this problem.

1. Formulation of the problem. Let us choose a rectangular system of coordinates $O x y z$ with the origin at the center of mass of the attracting points M_{1} and M_{2} such that the x-axis would lie along the line joining M_{1} and M_{2}. The equations of motion for the points can then be written as

$$
\frac{d^{2} x}{d t^{2}}=\frac{\partial U}{\partial x}, \quad \frac{d^{2} y}{d t^{2}}=\frac{\partial U}{\partial y}, \quad \frac{d^{2} z}{d t^{2}}=\frac{\partial U}{\partial z}
$$

where the attraction potential is of the form

$$
\begin{equation*}
U=\frac{f M}{2}\left[\frac{1+i 5}{\sqrt{x^{2}+y^{2}+[z-c(\sigma+i)]^{2}}}+\frac{1-i 5}{\sqrt{x^{2}+y^{2}+[z-c(5-i)]^{2}}}\right] \tag{1.1}
\end{equation*}
$$

If M is taken as the mass of the earth, then c and σ can be chosen so that the first three terms of the Legendre polynomial expansion of the
earth potential would coincide with the potential (1.1).
Let us replace the variables x, y, z by the new variables u, v, w as follows

$$
\begin{equation*}
x=c \cosh v \sin u \cos w, \quad y=c \cosh v \sin u \sin w \quad z=c \sigma+c \sinh v \cos u \tag{1.2}
\end{equation*}
$$

In this case the energy and the surface integrals will be of the form

$$
\begin{equation*}
T-U=h, \quad \dot{v} \cosh ^{2} v \sin ^{2} u=c_{1} \tag{1.3}
\end{equation*}
$$

Here T is the kinetic energy and U the potential in the new variables

$$
T=\frac{c^{2}}{\dot{2}}\left[\left(\dot{u}^{2}+\dot{v}^{2}\right)\left(\sinh ^{2} v+\cos ^{2} u\right)+\dot{w}^{2} \cosh ^{2} v \sin ^{2} u\right], \quad U=\frac{f M \sinh v-\sigma \cos u}{c \sinh ^{2} v+\cos ^{2} u}
$$

Also, let us introduce the new regulating variable t in place of time t

$$
\begin{equation*}
d t=\left(\sinh ^{2} v+\cos ^{2} u\right) d \tau \tag{1.4}
\end{equation*}
$$

Then, substituting the variables (1.2) and lowering the system order by two by the use of the first integrals (1.3), we obtain

$$
\frac{d^{2} u}{d \tau^{2}}=\frac{f M \sigma}{c^{3}} \sin u+\frac{c_{1}^{2} \cos u}{\sin ^{2} u}-\frac{h}{c^{2}} \sin 2 u, \quad \frac{d^{2} v}{d \tau^{2}}=\frac{f M}{c^{3} \cosh v-\frac{c_{1}{ }^{2} \sinh v}{\cosh ^{3} v}+\frac{h}{c^{3}} \sinh 2 v \quad \text { (1.5) } \quad \text {) }}
$$

Since the system of equations of motion is reducible to two independent equations (1.5) this then permits the investigation of stability with respect to a part of the variables. Furthermore, it can be seen from (1.4) that in investigating stability T will have the same role as t.
2. Stability of ellipsoidal orbits. Let us augment the system of equations (1.5) with the equations

$$
\begin{equation*}
d h / d \tau=0, \quad d c_{1} / d \tau=0 \tag{2.1}
\end{equation*}
$$

The system of equations, second in (1.5) and (2.1), permits a particular solution

$$
\begin{equation*}
v=v_{0}, \quad v^{\prime}=0, \quad h=h_{0}, \quad c_{1}=c_{10} \tag{2.2}
\end{equation*}
$$

This solution exists if v_{0} is a root of equation

$$
\frac{f M}{c^{3}} \cosh v_{0}-\frac{c_{1 n^{2}} \sinh v_{0}}{\cosh ^{3} v_{0}}+\frac{h_{0}}{c^{2}} \sinh 2 v_{0}=0
$$

In this case the point will be located on the surface of the ellipsoid

$$
\frac{x^{2}}{c^{2} \cosh ^{2} v_{0}}+\frac{y^{2}}{c^{2} \cosh ^{2} v_{0}}+\frac{(z}{c^{2} \sinh ^{2} v^{2}}=1
$$

The equatorial surface of this ellipsoid coincides with the equatorial surface of the earth, the semi-axes and the eccentricity of which are

$$
\begin{equation*}
a=c \cosh v_{0}, \quad b=c \sinh v_{0}, \quad e=1 / \cosh v_{0} \tag{2.3}
\end{equation*}
$$

For $c_{10}=0$ the orbit will be polar and elliptic. If it is assumed that $\sigma=0$, then the potential (1.1) becomes

$$
\begin{equation*}
U=\frac{1 M}{2}\left[\frac{1}{\sqrt{x^{2}+y^{2}+[z-c i]^{2}}}+\frac{1}{\sqrt{x^{2}+u^{2}+[z+c i]^{2}}}\right] \tag{2.4}
\end{equation*}
$$

The stability of motion along elliptic orbits in a field with the potential (2.4) was investigated by Aksenov, Grebenikov and Demin. Since σ is not included in the system of equations (2.1) or in the second equation in (1.5), the result obtained by the above authors can be utilized.

Let us introduce the following notation for the perturbations:

$$
v=v_{0}+x_{1}, \quad v^{\prime}=x_{2}, \quad h=h_{0}+x_{3}, \quad c_{1}^{2}=c_{10}^{2}+x_{4}
$$

Then the differential equations for perturbed motion become

$$
\begin{gathered}
\frac{d x_{1}}{d \tau}=x_{2}, \quad \frac{d x_{3}}{d \tau}=0, \quad \frac{d x_{4}}{d \tau}=0 \\
\frac{d x_{2}}{d \tau}=\frac{f M}{c^{3}} \cosh \left(v_{0}+x_{1}\right)-\frac{h_{0}+x_{3}}{c^{2}} \sinh 2\left(v_{0}+x_{1}\right)-\frac{\left(c_{10}{ }^{2}+x_{4}\right) \sinh \left(v_{0}+x_{1}\right)}{\cosh ^{3}\left(v_{0}+x_{1}\right)}
\end{gathered}
$$

which possess the first integrals

$$
\begin{gathered}
F_{1}=x_{2}^{2}-\frac{2 f M}{c^{3}}\left[\sinh \left(v_{0}+x_{1}\right)-\sinh v_{0}\right]+2 \frac{h_{0}+x_{3}}{c^{2}} \sinh ^{2}\left(v_{0}+x_{1}\right)- \\
-2 \frac{h_{0}}{c^{2}} \sinh ^{2} v_{0}-\frac{c_{10}^{2}+x_{4}}{\cosh ^{2}\left(v_{0}+x_{1}\right)}+\frac{c_{10}^{2}}{\operatorname{conh}^{2} v_{0}}=\text { const, } \quad F_{2}=x_{3}=\text { const, } \quad F_{3}=x_{4}=\text { const }
\end{gathered}
$$

Following Chetaev [4] we will construct the Liapunov function in the form of a combination of integrals

$$
\begin{gathered}
W=F_{1}-2 \sinh ^{2} v_{0} F_{2}+\frac{1}{\cosh ^{2} v_{0}} F_{3}+A_{2} F_{2}^{2}+A_{3} F_{3}^{2}= \\
=x_{2}^{2}+\left(\frac{f M_{\cosh }{ }^{2} v_{0}}{c^{3} \sinh ^{2} v_{0}}-\frac{4 c_{10}^{2}}{\cosh ^{2} v_{0}}\right) x_{1}^{2}+A_{2} x_{3}^{2}+A_{3} x_{4}^{2}+2 \sinh 2 v_{0} x_{1} x_{3}+\frac{2 \sinh v_{0}}{\cosh ^{3} v_{0}} x_{1} x_{4}+\ldots
\end{gathered}
$$

Utilizing the Silvester criterion, it is possible to obtain a sufficient condition for which the function W is positive definite, at least for the small values of $x_{1}, x_{2}, x_{3}, x_{4}$. This condition will be unique since the undetermined multipliers A_{2} and A_{3} are selected so that the remaining conditions of the Silvester criterion are fulfilled. This condition is

$$
\begin{equation*}
\frac{f M \cosh ^{2} v_{0}}{c^{3} \sinh v_{0}}>\frac{4 c_{10}^{2}}{\cosh ^{4} v_{0}} \tag{2.5}
\end{equation*}
$$

Since the derivative of the function W is equal to zero then, according to a Liapunov theorem [5], the motion (2.2) will be stable with
respect to the semi-axes and the eccentricity of the ellipsoid if the condition (2.5) is fulfilled. By obtaining the sufficient condition for stability (2.5), Aksenov, Grebenikov and Demin conclude the stability investigation of the ellipsoidal orbits.

It is easy to show, however, that the inequality (2.5) will always be fulfilled for real earth satellites. Indeed, taking into account the notation (2.3), the inequality (2.5) can be written as

$$
\begin{equation*}
f M \frac{a^{6}}{c^{6}}>4 c^{8} c_{10^{2}} \frac{b}{c} \tag{2.6}
\end{equation*}
$$

Since $b \leqslant a$, (2.6) Will be fulfilled if

$$
\begin{equation*}
f M a^{5}>4 c^{8} c_{10}{ }^{2} \tag{2.7}
\end{equation*}
$$

Let $d=r \times V$. where r and V are, respectively, the radius vector and the velocity vector of the point, while d_{10} is the projection of the vector d on the z-axis, corresponding to the initial values (2.2). Then

$$
c_{10}{ }^{2}=\frac{d_{10^{2}}}{c^{4}} \leqslant \frac{d^{2}}{c^{4}}=\frac{|r \times V|^{2}}{c^{4}} \leqslant \frac{r^{2} V^{2}}{c^{4}}
$$

Taking the last inequality into account and since $r \leqslant a$ it can be stated that (2.7) will be fulfilled if

$$
\begin{equation*}
f M a^{3}>4 c^{2} V^{2} \tag{2.8}
\end{equation*}
$$

It follows from the first integral in (1.3) that

$$
\frac{V^{2}}{2}=\frac{f M}{2}\left[\frac{1+i 3}{\sqrt{x_{2}+y^{2}+[2-c(5+i)]^{2}}}+\frac{1-i \sigma}{\sqrt{x^{2}+y^{2}+[z-c(5-i)]^{2}}}\right]+h
$$

but since the motion takes place in a bounded region then $h<0$, i.e.

$$
\begin{equation*}
V^{2}<f M\left[\frac{1+i s}{\sqrt{x^{2}+y^{2}+[z-c(\sigma+i)]^{2}}}+\frac{1-i 5}{\sqrt{x^{2}+y^{2}+[z-c(5-i)]^{2}}}\right] \tag{2.9}
\end{equation*}
$$

Expanding the right-hand side of the inequality (2.9) into a series of Legendre polynomials, one can be convinced that if (2.9) is fulfilled then $V^{2}<f M / r$, but then (2.8) and therefore all the preceding inequalities as well will be fulfilled for $r>c \sqrt{ }$. Since $c=210 \mathrm{~km}$, the last inequality will be fulfilled for all real earth satellites ($r>6370 \mathrm{~km}$). Thus, all real ellipsoidal motions of earth satellites are stable with respect to the semi-axis and the eccentricity of the ellipsoid.
3. Stability of hyperboloidal orbits. Let us consider the particular solution of the system - first in (1.5) and (2.1)

$$
\begin{equation*}
u=u_{0}, \quad u^{\prime}=0, \quad h=h_{0}, \quad c_{1}=c_{10} \tag{3.1}
\end{equation*}
$$

This solution will exist if u_{0} is a root of the equation

$$
\frac{f M \sigma}{c^{8}} \sin u_{0}+\frac{c_{10^{2}} \cos u_{0}}{\sin ^{3} u_{0}}-\frac{h_{0}}{c^{4}} \sin 2 u_{0}=0
$$

In this case the point will move on the surface of the hyperboloid

$$
\frac{x^{2}}{c^{2} \sin ^{2} u_{0}}+\frac{y^{2}}{c^{2} \sin ^{2} u_{0}}-\frac{(\varepsilon-c s)^{2}}{c^{2} \cos ^{2} u_{0}}=1
$$

Its real and imaginary semi-axes will be

$$
\begin{equation*}
a_{1}=c \sin u_{0}, \quad b_{1}=c \cos u_{0} \tag{3.2}
\end{equation*}
$$

In particular, for $c_{10}=0$ the point will move on a certain meridional hyperbola. Let us denote the values of the variables in perturbed motion by

$$
u=u_{0}+x_{1}, \quad u^{\prime}=x_{2}, \quad h=h_{0}+x_{2}, \quad c_{1}{ }^{3}=c_{10}{ }^{2}+x_{4}
$$

Then the differential equations of perturbed motion

$$
\begin{gathered}
\frac{d x_{1}}{d \tau}=x_{2}, \quad \frac{d x_{3}}{d \tau}=0, \quad \frac{a x_{4}}{d \tau}=0 \\
\frac{d x_{2}}{d \tau}=\frac{f M \sigma}{c^{3}} \sin \left(u_{0}+x_{1}\right)+\frac{\left(c_{10}^{2}+x_{4}\right) \cos \left(u_{0}+x_{1}\right)}{\sin ^{3}\left(u_{0}+x_{1}\right)}-\frac{h_{0}+x_{3}}{c^{2}} \sin 2\left(u_{0}+x_{1}\right)
\end{gathered}
$$

possess the first integrals

$$
\begin{array}{r}
F_{1}=x_{3}^{2}+\frac{2 f M \sigma}{c^{3}} \cos \left(u_{0}+x_{1}\right)+\frac{c_{10}^{2}+x_{4}}{\sin ^{2}\left(u_{0}+x_{1}\right)}-\frac{2 f M_{3}}{c^{2}} \cos u_{0}- \\
-\frac{c_{10} 0^{2}}{\sin ^{2} u_{0}}+\frac{k_{0}}{c^{2}} \cos 2 u_{0}=\mathrm{const}, \quad F_{2}=x_{2}=\text { const }, \quad F_{3}=x_{4}=\mathrm{const} \tag{3.3}
\end{array}
$$

In order to prove the stability of the unperturbed motion (3.1) we construct the Liapunov function, according to Chetaev [4], in the form of a combination of integrals

$$
W=F_{1}+\frac{\cos 2 u_{0}}{c^{2}} F_{2}-\frac{1}{\sin ^{2} u_{0}} F_{3}+\mu_{2} F_{2}^{2}+\mu_{3} F_{2}^{2}
$$

Here μ_{2} and μ_{3} are arbitrary constants.
Expanding " into a Taylor series in the neighborhood of $x_{1}=x_{2}=x_{3}=$ $x_{4}=0$, and retaining terms up to the second order, we obtain

$$
W=\mu_{1} x_{1}^{2}+x_{2}^{2}+\mu_{3} x_{3}^{2}+\mu_{5} x_{4}^{3}+\frac{2}{c^{2}} \sin 2 u_{0} x_{1} x_{2}-\frac{2 \cos u_{0}}{\sin ^{2} u_{0}} x_{2} x_{4}+\ldots
$$

Since in view of (3.3), the differential of is equal to zero, then for stability of the unperturbed motion (3.1) it is sufficient, according to a Liapunov theorem [5], that the following inequalities be fulfilled.

$$
\begin{gather*}
\mu_{1}=\frac{4 c_{10}^{2} \cos u_{0}}{\sin ^{4} u_{0}}-\frac{f M \sigma \sin ^{2} u_{0}}{\cos _{0}}>0 \tag{3.4}\\
\mu_{2} \mu_{1}-\frac{\sin ^{2} 2 u_{0}}{c^{4}}>0, \quad \mu_{3}\left(\mu_{2} \mu_{1}-\frac{\sin ^{2} 2 u_{0}}{c^{4}}\right)-\mu_{8} \frac{\cos ^{2} u_{0}}{\sin ^{6} u_{0}}>0 \tag{3.5}
\end{gather*}
$$

obviously, if the inequality (3.4) is fulfilled then μ_{2} and μ_{3} can be found such that the inequality (3.5) is also fulfilled. Taking (3.2) into account, the inequality (3.4) can be rewritten as

$$
\frac{4 c_{10}{ }^{2} b_{1} c^{3}}{a_{1}{ }^{\ddagger}}>\frac{M \sigma a_{1}^{2}}{b_{1} c}
$$

which will be fulfilled since $c>0, b_{1}>0, \sigma<0$.
Thus, the hyperboloidal motions are stable with respect to the semiaxes and the eccentricity of the hyperboloid.
4. Stability of circular orbits. If $u=u_{0}, v=v_{0}$, then the point moves on a circle

$$
x^{2}+y^{2}=c^{2} \cosh 2 r_{0} \sin ^{2} u_{0}, \quad z=c \sigma-c \sinh v_{0} \cos u_{0}
$$

In this case the point is located on the surface of the ellipsoid and the hyperboloid, and therefore all real motions of earth satellites are stable with respect to the radius of the circle.

A special investigation is required for the equatorial circular orbits $(z=c \sigma)$ since then $\cos u_{0}=0$ and the inequality (3.4) becomes meaningless. In order to investigate the stability of the equatorial circular orbits let us rewrite the potential (1.1) in terms of cylindrical coordinates ρ, ψ, z

$$
U=\frac{f M}{2}\left[\frac{1+i \sigma}{\sqrt{\rho^{2}+[z-c(\sigma+i)]^{2}}}+\frac{1-i \sigma}{\sqrt{\rho^{2}+[z-c(\sigma-i)]^{2}}}\right]
$$

It is shown in [6] that the circular motions of the considered equatorial type $\rho=\rho_{0}, z=c \sigma$ will be stable if and only if certain inequalities are fulfilled. In this case these inequalities are of the form

$$
\frac{f M \rho_{0}}{\sqrt{\left(\rho_{0}^{2}+c^{2}\right)^{5}}}>0, \quad \frac{f M\left(\rho_{0}^{2}-3 c^{2}\right)}{\sqrt{\left(\rho_{0}^{2}+c^{2}\right)^{5}}}>0
$$

It can be seen from this that the inequalities will be fulfilled for $P_{0}>c \sqrt{ }$ 3, i.e. for all real satellites of the earth.

The author is greatly indebted to V.G. Demin for the formulation of the problem and to V.V. Rumiantsev for review of the paper.

BIBLIOGRAPHY

1. Vinti, J.P., Theory of the effect of drag on the orbital inclination of an earth satellite. J. Res. Nat. Bur. Stand. Math. and Phys., 62B, No. 2, p. 79, 1959.
2. Kislik, M. D. Dvizhenie iskusstvennogo sputnika vormal' nom gravitatsionnom pole Zemli (Motion of an artificial satellite in a normal gravitational field of the earth). Dokl. Akad. Nauk SSSR, No. 4, 1960.
3. Aksenov, E.P., Grebenikov, E.A. and Demin V.G., Obshchee reshenie zadachi o dvizhenii iskusstvennogo sputnika v normal' nom pole pritiazhenifa Zemli (General solution of the problem of an artificial satellite motion in a normal gravitational field of the earth). Sb. Iskusstvennye sputniki Zemli. Dokl. Akad. Nauk SSSR, No. 8, 1961.
4. Chetaev, N.G., Ob ustoichivosti vrashchatel' nykh dvizhenii snariada (On the stability of rotational motions of a projectile). PMM, Vol. 9, No. 3, 1946.
5. Liapunov, A.M., Obshchaiia zadacha ob ustoichivosti dvizheniaa (General Problem on Stability of Motion). Gostekhizdat, 1950.
6. Degtiarev, V.G., Ob ustoichivosti krugovykh dvizhenii v zadache dvukh nepodvizhnykh tsentrov ($O n$ the stability of circular motions in the problem of two immovable centers). PMM, Vol. 26, No. 4, 1962.

Translated by V.C.

